A Gauss-Bonnet-like Formula on Two-Dimensional almost-Riemannian Manifolds

نویسندگان

  • Andrei A. Agrachev
  • Ugo Boscain
  • Mario Sigalotti
چکیده

We consider a generalization of Riemannian geometry that naturally arises in the framework of control theory. Let X and Y be two smooth vector fields on a two-dimensional manifold M . If X and Y are everywhere linearly independent, then they define a classical Riemannian metric on M (the metric for which they are orthonormal) and they give to M the structure of metric space. If X and Y become linearly dependent somewhere on M , then the corresponding Riemannian metric has singularities, but under generic conditions the metric structure is still well defined. Metric structures that can be defined locally in this way are called almost-Riemannian structures. They are special cases of rank-varying sub-Riemannian structures, which are naturally defined in terms of submodules of the space of smooth vector fields on M . Almost-Riemannian structures show interesting phenomena, in particular for what concerns the relation between curvature, presence of conjugate points, and topology of the manifold. The main result of the paper is a generalization to almost-Riemannian structures of the Gauss-Bonnet formula.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gauss-bonnet-chern Formulae and Related Topics for Curved Riemannian Manifolds

In this paper, we survey recent results on Gauss-Bonnet-Chern formulae and related issues for closed Riemannian manifolds with variable curvature. Among other things, we address the following problem: “if M is an oriented 2n-dimensional closed manifold with non-positive curvature, then is it true that its Euler number χ(M) satisfies the inequality (−1)χ(M) ≥ 0?” We will present some partial ans...

متن کامل

A Gauss-Bonnet-like Formula on Two-Dimensional Almost-Riemannian Manifolds1

We consider a generalization of Riemannian geometry that naturally arises in the framework of control theory. Let X and Y be two smooth vector fields on a two-dimensional manifold M . If X and Y are everywhere linearly independent, then they define a classical Riemannian metric on M (the metric for which they are orthonormal) and they give to M the structure of metric space. If X and Y become l...

متن کامل

On Zermelo-like problems: a Gauss-Bonnet inequality and an E. Hopf theorem

The goal of this paper is to describe Zermelo’s navigation problem on Riemannian manifolds as a time-optimal control problem and give an efficient method in order to evaluate its control curvature. We will show that up to changing the Riemannian metric on the manifold the control curvature of Zermelo’s problem has a simple to handle expression which naturally leads to a generalization of the cl...

متن کامل

On Zermelo’-like problems: a Gauss-Bonnet inequality and a E. Hopf theorem

The goal of this paper is to describe Zermelo’s navigation problem on Riemannian manifolds as a time-optimal control problem and give an efficient method in order to evaluate its control curvature. We will show that up to change the Riemannian metric on the manifold the control curvature of Zermelo’s problem has a simple to handle expression which naturally leads to a generalization of the clas...

متن کامل

On a Conformal Gauss-bonnet-chern Inequality for Lcm Manifolds and Related Topics

In this paper, we prove the following two results: First, we study a class of conformally invariant operators P and their related conformally invariant curvatures Q on even-dimensional Riemannian manifolds. When the manifold is locally conformally flat(LCF) and compact without boundary, Q-curvature is naturally related to the integrand in the classical Gauss-Bonnet-Chern formula, i.e., the Pfaf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008